Sample 1

James finds that when he draws the graph of \(f(x) = (x - 1)(x + 2) \), he finds it has the \(x \)-intercepts of -2 and 1, and a \(y \)-intercept of -2.

Which graph represents the function \(f(x) = (x - 1)(x + 2) \)?

A.
B.
C.
D.
<table>
<thead>
<tr>
<th>Answer Choice</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>The student may have used the numbers in the parentheses as the intercepts rather than the stated intercepts and inverted the graph.</td>
</tr>
<tr>
<td>B.</td>
<td>The student may have correctly chosen the correct (x) -intercepts but has inverted the graph.</td>
</tr>
<tr>
<td>C.</td>
<td>Correct Answer; The student has correctly placed the correct intercepts on the (x)-axis and the (y)-axis. The student could also create a table of values and plot the graph.</td>
</tr>
</tbody>
</table>
| | \[
\begin{array}{c|cccccc}
 x & -3 & -2 & -1 & 0 & 1 & 2 \\
 f(x) & 4 & 0 & -2 & -2 & 0 & 4 \\
\end{array}
\] |
| D. | The student may have incorrectly used the numbers in the function, -1 and 2, as the \(x \)-intercepts. |
Sample 2

A diagram of a rotation is shown.

What is the value of $6x + 5y$?

A. 70
B. 73
C. 112
D. 130

Answer Key

<table>
<thead>
<tr>
<th>Answer Choice</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| A. | *Correct Answer*; The student correctly mapped the corresponding side lengths to each other and found the value of $6x + 5y$.
$12x + 4 = 64$
$12x = 60$
$x = 5$
$3y + 4 = 28$
$3y = 24$
$y = 8$
$6(5) + 5(8) = 70$ |
| B. | The student correctly mapped the corresponding side lengths to each other. However, when substituting into the expression $6x + 5y$ the student may have switched the values of x and y.
$12x + 4 = 64$ |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | \[12x = 60\]
 | \[x = 5\]
 | \[3y + 4 = 2\]
 | \[3y = 24\]
 | \[y = 8\]
 | \[6(8) + 5(5) = 73\]
---|---|
| **C.** | The student may have incorrectly mapped the corresponding side lengths to each other and found the value of \[6x + 5y\].
 | \[12x + 4 = 28\]
 | \[12x = 24\]
 | \[x = 2\]
 | \[3y + 4 = 64\]
 | \[3y = 60\]
 | \[y = 20\]
 | \[6(2) + 5(20) = 112\]
---|---|
| **D.** | The student may have incorrectly mapped the corresponding side lengths to each other. When substituting into the expression \[6x + 5y\], the student may have switched the values of \(x\) and \(y\).
 | \[12x + 4 = 28\]
 | \[12x = 24\]
 | \[x = 2\]
 | \[3y + 4 = 64\]
 | \[3y = 60\]
 | \[y = 20\]
 | \[6(20) + 5(2) = 130\]
---|---|